3.2.96 \(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx\) [196]

3.2.96.1 Optimal result
3.2.96.2 Mathematica [C] (verified)
3.2.96.3 Rubi [A] (verified)
3.2.96.4 Maple [A] (verified)
3.2.96.5 Fricas [C] (verification not implemented)
3.2.96.6 Sympy [F]
3.2.96.7 Maxima [F]
3.2.96.8 Giac [F]
3.2.96.9 Mupad [F(-1)]

3.2.96.1 Optimal result

Integrand size = 23, antiderivative size = 110 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \]

output
-sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))+(cos(1/2*d*x+1/2*c)^2)^(1/ 
2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/ 
2)*sec(d*x+c)^(1/2)/a/d+(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*El 
lipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d
 
3.2.96.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.42 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.83 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=-\frac {2 i e^{-i (c+d x)} \cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (1+e^{2 i (c+d x)}-\left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+e^{i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right ) \sec ^{\frac {3}{2}}(c+d x)}{a d \left (1+e^{i (c+d x)}\right ) (1+\sec (c+d x))} \]

input
Integrate[Sec[c + d*x]^(3/2)/(a + a*Sec[c + d*x]),x]
 
output
((-2*I)*Cos[(c + d*x)/2]^2*(1 + E^((2*I)*(c + d*x)) - (1 + E^(I*(c + d*x)) 
)*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I 
)*(c + d*x))] + E^(I*(c + d*x))*(1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*(c 
 + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sec[c + 
d*x]^(3/2))/(a*d*E^(I*(c + d*x))*(1 + E^(I*(c + d*x)))*(1 + Sec[c + d*x]))
 
3.2.96.3 Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 4305, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4305

\(\displaystyle -\frac {\int -\frac {\sec (c+d x) a+a}{2 \sqrt {\sec (c+d x)}}dx}{a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec (c+d x) a+a}{\sqrt {\sec (c+d x)}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {a \int \frac {1}{\sqrt {\sec (c+d x)}}dx+a \int \sqrt {\sec (c+d x)}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

input
Int[Sec[c + d*x]^(3/2)/(a + a*Sec[c + d*x]),x]
 
output
((2*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + 
 (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d)/ 
(2*a^2) - (Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))
 

3.2.96.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4305
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[d^2*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 2)/(f*(a + 
b*Csc[e + f*x]))), x] - Simp[d^2/(a*b)   Int[(d*Csc[e + f*x])^(n - 2)*(b*(n 
 - 2) - a*(n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ 
[a^2 - b^2, 0] && GtQ[n, 1]
 
3.2.96.4 Maple [A] (verified)

Time = 3.94 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.82

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(200\)

input
int(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2* 
c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*sin 
(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d 
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+ 
1/2*c)^2-1)^(1/2)/d
 
3.2.96.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.67 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {{\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

input
integrate(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")
 
output
1/2*((-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos( 
d*x + c) + I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstr 
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x + c 
) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) + I*sin(d*x + c))) + (-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrass 
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2 
*sqrt(cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)
 
3.2.96.6 Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \]

input
integrate(sec(d*x+c)**(3/2)/(a+a*sec(d*x+c)),x)
 
output
Integral(sec(c + d*x)**(3/2)/(sec(c + d*x) + 1), x)/a
 
3.2.96.7 Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)
 
3.2.96.8 Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)
 
3.2.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

input
int((1/cos(c + d*x))^(3/2)/(a + a/cos(c + d*x)),x)
 
output
int((1/cos(c + d*x))^(3/2)/(a + a/cos(c + d*x)), x)